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Abstract— This paper presents a graph theory-based approach 

to analyze and optimize strategies in the card game UNO. We 

model the gameplay using weighted graphs and implement both 

Dijkstra's and Minimax algorithms for strategic decision-making. 

Our implementation demonstrates that Dijkstra's algorithm excels 

at optimizing immediate moves, while Minimax provides robust 

defensive strategies in multi-player scenarios. The results show that 

graph-based modeling effectively identifies optimal card sequences 

and strategic decisions, contributing to the broader understanding 

of applying graph theory in game strategy optimization. 

 

Keywords—graph theory, UNO card game, Dijkstra's algorithm, 

Minimax algorithm, game strategy optimization. 

 

I.   INTRODUCTION 

Graph theory, a branch of discrete mathematics, is widely 

used to model relationships and optimize decision-making 

processes in complex systems. It provides a structured approach 

to understanding interactions within networks, making it a 

powerful tool for solving problems in various fields such as 

computer science, logistics, and social networks. The 

application of graph theory to games, particularly those 

involving strategic decision-making, has gained significant 

attention due to its ability to uncover optimal strategies and 

predict outcomes. 

UNO, a popular card game with simple yet dynamic rules, 

presents a unique opportunity for applying graph theory in a 

recreational setting. In UNO, each card is characterized by its 

color, number, and specific actions (e.g., skip, reverse, draw 

two), and players are required to match cards based on color or 

number to make moves. This leads to a system where the 

relationships between cards and players can be effectively 

modeled using graph theory. 

 

 
Fig 1. Uno Games 

Source: Playstation Store App 

In this paper, we model the game of UNO using graphs, where 

each card is represented as a vertex and edges connect cards that 

can be played consecutively according to the game’s rules. The 

graph will help identify optimal strategies by analyzing the 

connections between cards and their effects on gameplay. 

Specifically, we explore how the structure of the graph—such 

as the adjacency of playable cards, the potential sequences of 

moves, and the strategic positioning of action cards—can inform 

decision-making. 

Through this approach, we aim to provide a deeper 

understanding of the strategic elements in UNO, answering 

questions such as: 

- What is the most efficient sequence of moves to reduce 

hand size quickly? 

- How can players identify which cards should be 

prioritized to maintain a playable hand? 

- How does the presence of action cards (e.g., skip, 

reverse) influence the optimal strategy? 

By modeling the gameplay through a graph, we not only 

highlight the potential of graph theory in game theory but also 

demonstrate how it can be applied to enhance decision-making 

in simple rule-based environments. The results of this study 

offer valuable insights into strategy optimization, with broader 

implications for games involving similar structured interactions. 

 

II.  THEORETICAL BASIS 

1. Graph Theory 
Graph theory, a pivotal area of discrete mathematics, 

examines the relationships between pairs of objects through 

graphs. A graph comprises vertices (nodes) and edges 

(connections between nodes). In this study, each vertex 

represents a card in the UNO game, and each edge signifies 

a playable connection between two cards, adhering to the 

game's rules [1]. 

Graphs can be categorized into various types, 

including: 
- Bipartite Graphs: Graphs where vertices can be 

divided into two disjoint subsets, with edges only 

connecting vertices from different subsets. In UNO, 

this could represent cards classified by color or number 

[1]. 
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Fig 2.1. Bipartite Graph 

Source: Graph-Part-1 informatika.stei.itb.ac.id 

- Weighted Graphs: Graphs where edges have weights 

assigned, representing some form of cost or distance. 

In UNO, weights could denote the strategic value of a 

card in terms of its impact on the game's progress [1]. 

 
Fig 2.2. Weighted Graph and Unweighted Graph 

Source: Graph-Part 1 informatika.stei.itb.ac.id 

- Trees and Cycles: A tree is a connected graph with no 

cycles, while a cycle is a path where the starting and 

ending vertices are the same. Cycles may appear in the 

sequence of moves during the game, where cards loop 

back to earlier positions [1]. 

 
Fig 2.3 Tree, Cycles, and Forest 

Source: Graph-Part 1 informatika.stei.itb.ac.id 

2. Graph Representation of UNO 
In this study, we model the UNO game using a graph 

where each card is represented by a vertex, and edges 

connect cards that are playable based on the game's rules. 

The game follows a set of simple yet dynamic rules: 

- Players can play a card if it matches the color or 

number of the card in the centre [3]. 

- Special action cards (such as skip, reverse, draw two, 

wild) have additional effects that modify the sequence 

of moves or the flow of the game [3]. 

Thus, in our graph representation: 

o Vertices represent the cards in a player's hand 

or the deck. 

o Edges represent possible moves between 

cards that satisfy the game's playability rules 

(matching colors or numbers). 

o Action cards introduce additional edges that 

affect the state of the game (such as skipping 

the next player or reversing the direction of 

play). 

3. Graph Algorithms for Strategy Analysis 
Several key graph algorithms can be applied to 

analyze optimal strategies in UNO: 

3.1. Depth-First Search (DFS) and Breadth-First 

Search (BFS): DFS explores the graph by diving deep 

into one possible sequence of moves before 

backtracking. This can be used to simulate a sequence 

of card plays to find the longest playable sequence or 

to identify dead ends in gameplay. By exploring all 

possible paths, DFS can help analyze which cards 

should be played first to maximize future 

opportunities [4]. ): BFS explores the graph level by 

level, ensuring that all reachable cards are explored in 

a systematic order. In the context of UNO, BFS could 

help identify the shortest path (i.e., the fewest number 

of moves) to reach a winning state by playing all cards 

[4]. 

 

Fig 2.4. DFS and BFS Representation 

Source: GeeksforGeeks 

3.2. Maximum Matching: This algorithm helps identify 

pairs of cards that can be played consecutively based 

on the game's rules. By maximizing the number of 

matching cards in the player's hand, we can strategize 

the optimal sequence for card play [4]. 

3.3. Graph Coloring: Graph coloring can be used to 

represent situations where cards of a certain color 

must be prioritized or separated. The coloring 

algorithm can help in situations where multiple color 

cards exist, and finding an optimal color grouping for 

a player's hand can be beneficial [4]. 
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Fig 2.5. Graph Coloring 

Source: Graph-Part 3-informatika.stei.itb.ac.id 

 

3.4. Shortest Path Algorithms (Dijkstra’s or Bellman-

Ford): These algorithms can be used to calculate the 

quickest path to reduce a player's hand size. In the 

context of UNO, the goal is to minimize the number 

of turns or moves required to empty the hand, taking 

into account action cards that could alter the course of 

play [4]. 

3.5. Minimax Algorithm: The Minimax Algorithm is a 

decision-making strategy typically used in two-player 

games where one player's gain is another player's loss. 

In the context of UNO, the algorithm can be adapted 

to model strategic decision-making in dynamic, multi-

player scenarios by treating the game's state as a tree 

structure, where each node represents a possible game 

state, and edges represent potential moves. 

4. Strategy Optimization in Game Theory 
In game theory, the concept of optimal strategies is 

crucial. An optimal strategy is one that maximizes a 

player's chances of winning, taking into account all 

possible moves and counter-moves. The optimal strategy 

in UNO is influenced by both the state of the game (i.e., 

the cards in the hand and on the table) and the rules 

governing card play [5]. 

In the context of UNO, graph theory helps optimize 

strategy by: 

o Modeling the possible sequences of plays to 

minimize the number of moves required to win [5]. 

o Analyzing the effects of action cards (such as Wild 

and Skip) to determine the best time to use them for 

disrupting the opponent's progress [5]. 

o Identifying the best starting card by analyzing the 

graph to determine which card is most likely to open 

up the greatest number of future plays [5]. 

By combining these graph-based algorithms with game-

theory concepts, it is possible to develop a comprehensive 

strategy that can be applied in real-world UNO gameplay 

[5]. 

 

III.   ANALYZING UNO STRATEGY USING GRAPH-BASED 

APPROACH 

Based on the theorical basis that had been discussed, as the 

topic of this paper is bound to a strategic games. The graph is 

used to represents not only the standard UNO card that used in 

the game, but also the game-flow is represented by using graph. 

The graph that is being used is basically to generate the best 

algorithm procedure to find the best move it could find. For the 

example in this paper is going to used the Dijkstra’s Algorithm 

(an algorithm to find the shortest path by using weighted value 

by weighted graph represented). 

1. Cards Value Representation Using Graph 

 In the context of UNO, each card possesses unique attributes 

such as color, number, or action type (e.g., Skip, Reverse, Wild). 

These attributes can be effectively mapped into a graph 

structure, where each card is represented as a vertex and their 

playable relationships are defined as edges. The edges in the 

graph signify the possible moves allowed based on UNO rules, 

such as matching by color, number, or action. 

1.1. Vertex Representation 

Each vertex in the graph corresponds to a specific 

card in the UNO deck. For instance: A red "5" card is 

represented as a vertex labelled R5. A blue "Skip" 

card is represented as a vertex labelled B-Skip. 

1.2. Edges Representation 

Edges between vertices define the transitions 

between playable cards: 

o If two cards share the same color, an edge is 

formed. For example: R5 ↔ R7 (Red cards 

"5" and "7"). 

o If two cards share the same number, an edge 

is formed. For example: R5 ↔ G5 (Cards 

"5" in red and green colors). 

o Action cards (e.g., Wild) connect to all 

possible playable cards. For example: Wild 

↔ R5, Wild ↔ B-Skip. 

1.3. Weighted Graph Representation 

Edges between vertices define the transitions 

between playable cards: 

o If two cards share the same color, an edge is 

formed. For example: R5 ↔ R7 (Red cards 

"5" and "7"). 

o If two cards share the same number, an edge 

is formed. For example: R5 ↔ G5 (Cards 

"5" in red and green colors). 

o Action cards (e.g., Wild) connect to all 

possible playable cards. For example: Wild 

↔ R5, Wild ↔ B-Skip. 

 
Fig 3.1. Graph for cards value representation 

Source: Author’s Document 
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2. Game Flow Representation Using Graph 
The game flow in UNO can also be represented as a 

dynamic graph. Here, the focus is on the sequence of 

moves during a player's turn and how the graph evolves 

with each play. 

 

2.1. Turn-Based Transitions 

During each turn, the graph is updated based on 

the active card on the discard pile: 

o The active card becomes the "source" vertex. 

o All valid moves from the player's hand form 

the outgoing edges from the source vertex. 

 

2.2. Example of Turn-Based Graph Evolution    

Suppose the active card is R5, and the player's 

hand contains {R7, G5, Wild}: 

o Graph at turn start: Source vertex: R5. 

Outgoing edges: {R5 → R7, R5 → G5, R5 

→ Wild}. 

o After playing R7, the graph updates: Source 

vertex: R7. Outgoing edges: {R7 → Wild} 

(assuming only Wild remains playable). 

 

2.3. Dynamic Weight Adjustment 

To optimize the decision-making process, edge 

weights can dynamically adjust based on: 

o Remaining cards: Assign higher weights to 

moves that leave the opponent with more 

cards. 

o Action cards: Prioritize moves that disrupt 

opponents (e.g., Skip, Reverse). 

 

 

 
Fig 3.2. Graph for game-flow 

Source: Author’s document 

 

3. Strategic Pathfinding Using Dijkstra’s Algorithm 
The graph structure allows for the application of 

Dijkstra's algorithm to find the optimal sequence of plays. 

The goal is to identify the shortest path (lowest weight) to 

achieve a winning condition, such as emptying the hand. 

3.1. Algorithm Implementation 

o Input Graph: Provide the weighted graph 

representing the current state of the game. 

o Start Node: Set the active card as the starting 

vertex. 

o End Node: Define the goal state, such as a vertex 

representing an empty hand or a specific winning 

move. 

o Pathfinding: Apply Dijkstra’s algorithm to 

calculate the shortest path and its total weight. 

3.2. Example Application 

o Initial state: Player’s hand = {R7, G5, Wild}, 

Active card = R5. 

o Graph weights: 

▪ R5 → R7: Weight 1 (matching color). 

▪ R5 → G5: Weight 2 (matching number). 

▪ R5 → Wild: Weight 0.5 (universal 

playability). 

o Dijkstra's output: 

▪ Optimal path: R5 → Wild. 

▪ Total weight: 0.5. 

 

 
Fig 3.3. Dijkstra’s algorithm pathfinding graph 

visualization 

Source: Author's document 

 

Table 3.1. Effectiveness percentage table 

 

Move Weight 

(𝑤) 

Effectiveness 

(
1

𝑤
) 

Percentage 

(
𝐸

ΣE
 × 100%) 

 

R7 (Same 

Color) 

1 1 28,57% 

G5 (Same 

Number) 

2 0,5 14,29% 

Wild 

(Universal) 

0,5 2 57,14% 

 

4. Dynamic Strategy Optimization Using Minimax 

Algorithm 

4.1. Representing the Game Using a Game Tree 

To apply the Minimax Algorithm, the game is first 

represented as a tree structure. Each node in the tree 

corresponds to a unique game state, defined by: 

▪ The player’s hand (cards available for play). 
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▪ The current top card on the discard pile. 

▪ The cards potentially held by the opponents 

(estimated based on previous moves). 

▪ The state of the draw pile. 

Edges between nodes represent possible actions, such 

as playing a card, drawing a card, or skipping a turn. The 

game tree is expanded up to a specific depth, representing a 

sequence of moves. Terminal nodes (leaf nodes) correspond 

to the end of a series of moves, where the evaluation 

function assigns a score to the resulting game state. 

4.2. Evaluation Function 

The evaluation function is central to the Minimax 

Algorithm, as it quantifies the desirability of each game 

state. For UNO, the evaluation function could consider: 

▪ Reduction in Player’s Cards: Favor moves that 

reduce the number of cards in the player’s hand. 

▪ Impact on Opponents: Penalize moves that allow 

opponents to play or reduce their cards easily. 

▪ Special Card Effects: Reward moves that utilize 

special cards (e.g., Skip, Reverse, Wild) to disrupt 

opponents or gain strategic advantage. 

▪ Game Progression: Account for moves that bring 

the player closer to winning the game while 

limiting the opponents’ ability to do so. 

4.3. Applying the Minimax Algorithm 

The Minimax Algorithm is applied by first 

constructing a game tree from the current state of the UNO 

game, where each branch represents a sequence of possible 

moves. Starting at the root node, which corresponds to the 

current game state, the algorithm explores all potential 

actions up to a specific depth in the tree. Each terminal node 

(leaf node) is evaluated using an evaluation function that 

assigns a score to the resulting game state. The algorithm 

then backpropagates these scores to determine the optimal 

path. Maximizing nodes, which represent the current 

player's turn, select the move that yields the highest score, 

aiming to improve the player’s advantage. Conversely, 

minimizing nodes, representing the opponents' turns, 

choose the move with the lowest score, attempting to 

minimize the maximizing player's benefit. This process 

ensures that the selected move considers not only the 

player’s perspective but also the opponents’ potential 

responses. Additionally, after each turn, the game tree is 

dynamically recalculated, allowing the strategy to adapt to 

the evolving game state and maintain its effectiveness 

throughout the game. 

4.4. Scenario Example 

Consider a scenario where the player’s hand includes 

the following cards: R5, R7, G5, B-Skip, Wild. The current 

top card on the pile is R5. The possible moves are: 

o Play R7 (same color as the top card). 

o Play G5 (same number as the top card). 

o Play Wild (valid regardless of the top card). 

o Play B-Skip (invalid unless a blue card or 

Skip is on top, so not considered). 

o Draw a card from the draw pile. 

 

 
 

Fig 4.1. Visualization for game scenario examples 

Source: Author’s document 

The Minimax Algorithm evaluates these moves, 

considering the effects on the game state and opponents. 

For instance, playing Wild might force the opponent to 

draw cards if they lack the chosen color, while playing R7 

maintains the current color and avoids helping the 

opponent. 

4.5. Algorithm Implementation 

The implementation of the Minimax Algorithm in the 

context of UNO requires constructing a game tree, where 

each node represents a game state. The edges denote 

transitions resulting from possible moves, and terminal 

nodes are evaluated to determine the desirability of a game 

state. The algorithm backpropagates these evaluations to 

identify the optimal move. 
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Fig 4.2. Source code for minimax algorithm (based on the 

example given) 

Source: Author’s Document 

The Minimax Algorithm implemented in the code is 

designed to evaluate the best move in a game scenario, 

represented as a tree structure. The algorithm recursively 

explores all possible moves from a given state, alternating 

between a maximizing player (who seeks to maximize the score) 

and a minimizing player (who seeks to minimize the score). 

In the provided example, the game starts with the "start" state. 

From here, the player can choose between playing the card R5 

(Red 5) or Wild. If the player chooses R5, the subsequent moves 

could be R7 (Red 7) or G5 (Green 5). If the player chooses 

Wild, the next moves could be B-Skip (Blue Skip) or R7. Each 

of these moves leads to an end state, which signifies the 

termination of the game. 

The algorithm begins at the root node ("start") and evaluates 

each branch of the tree to a specified depth (3 in this case). For 

instance, if the maximizing player selects R5, the algorithm 

proceeds to evaluate the children of R5, which are R7 and G5. 

The values assigned to these cards are retrieved from the 

card_values dictionary, where R7 has a value of 7 and G5 has 

a value of 5. The algorithm compares these values to determine 

the best move for the maximizing player. 

If the minimizing player then takes a turn, they will evaluate 

their moves (e.g., B-Skip or R7) with the goal of minimizing the 

score. For example, playing B-Skip leads to an end state with a 

value of 3, while R7 leads to an end state with a value of 7. The 

minimizing player will prefer the branch that leads to the lower 

value (3 in this case). The algorithm uses the evaluation values 

to backtrack through the tree, calculating the optimal path for 

both the maximizing and minimizing players. 

 
Fig 4.3. Minimax graph visualization 

Source: Author’s document 

 

5. Real Time Game Implementation 

5.1. Introduction to the game 

The provided code simulates a UNO card game with 

players using two different algorithms: Dijkstra's Algorithm 

for the first player and the Minimax algorithm for the 

remaining players. The game adheres to the classic rules of 

UNO, where players take turns playing cards that match 

either the color or the value of the top card in the discard 

pile. Special cards like 'Skip', 'Reverse', and 'Draw Two' 

introduce additional mechanics, while 'Wild' and 'Wild 

Draw Four' allow players to change the color. 

5.2. Game scenario 

In the UNO game simulation, four players are 

involved, with Player 1 using Dijkstra’s Algorithm and 

Players 2-4 utilizing the Minimax Algorithm. The game 

starts with each player receiving 7 cards from a shuffled 

deck consisting of 108 cards, which includes number cards 

(0-9) and special cards (Skip, Reverse, Draw Two, Wild, 

and Wild Draw Four). A random card is placed in the 

discard pile to begin the game. During each round, the 

current player must either play a valid card matching the 

color or value of the top card on the discard pile or draw a 

card from the deck. The algorithms choose the optimal card 

based on their strategies: Dijkstra’s Algorithm for Player 1 

calculates the best move based on card weights, while the 

Minimax Algorithm simulates future moves to select the 

most favorable one. Special cards like Skip, Reverse, Draw 

Two, Wild, and Wild Draw Four add strategic layers to the 

game, affecting the turn order, direction of play, and forcing 

other players to draw cards. If a player cannot play a valid 

card, they draw from the deck and continue. The game ends 

when a player discards all their cards, or if the maximum 

round limit (100 rounds) is reached, with the player having 

the fewest remaining cards winning in the latter case. 

5.3. Algorithm and source code 

The UnoGame class is the central component of the 

UNO game simulation, encompassing all the game logic 

and mechanics. The game initializes with a shuffled deck of 

108 cards, which include both number cards (0-9) and 

special action cards (Skip, Reverse, Draw Two, Wild, Wild 

Draw Four). The game begins with each player being dealt 

7 cards, and a random card is placed in the discard pile. The 

is_valid_move method checks if a card played is 

compatible with the top card in the discard pile based on its 

color or value, and the get_valid_moves method returns a 

list of playable cards. The AI decision-making is handled 

through two distinct strategies: Dijkstra's Algorithm for 

Player 1 and Minimax for the other players. Dijkstra's 

Algorithm selects the optimal move by calculating the 

weight of each card, where special cards (Wild, Draw Two, 

etc.) are valued differently. In contrast, the Minimax 

Algorithm evaluates possible future states recursively using 

depth-first search with alpha-beta pruning to determine the 

best move. Special cards such as Skip, Reverse, and Draw 

Two have their effects on gameplay, manipulating turn 

order or forcing players to draw cards. The game progresses 

with players either playing a valid card or drawing from the 

deck if no valid moves are available. If a Wild card is 

played, the player selects a new color for the game to 

continue. The game ends when a player discards all their 

cards, or if the game exceeds 100 rounds, with the player 

holding the fewest cards being declared the winner in the 

latter case. 
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Fig 5.1. First snippet of the code 

Source: Author’s document 

 
Fig 5.2. Second snippet of the code 

Source: Author’s document 

 

Table 5.1. Terminal output 

Starting UNO game simulation... 

Player 1 uses Dijkstra's Algorithm 

Players 2-4 use Minimax Algorithm 

Initial hands: 

Player 1 (Dijkstra): Red 3, Blue 5, 

Green Skip, Yellow Reverse, Wild, Red 

0, Blue Draw Two 

Player 2 (Minimax): Green 3, Yellow 6, 
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Blue 8, Red Skip, Green 9, Yellow 2, 

Red 5 

Player 3 (Minimax): Blue 4, Red 7, 

Green Skip, Yellow Draw Two, Green 

Reverse, Red 9, Yellow 1 

Player 4 (Minimax): Green 6, Red Skip, 

Blue 3, Yellow Reverse, Green Draw Two, 

Red 0, Green Wild 

 

Starting card: Green 5 

 

Round 1 

Current player: 1 (Dijkstra) 

Top card: Green 5 

Player 1 plays: Green 5 

Current hand sizes: 

Player 1: 6 cards 

Player 2: 7 cards 

Player 3: 7 cards 

Player 4: 7 cards 

 

Round 2 

Current player: 2 (Minimax) 

Top card: Green 5 

Player 2 plays: Green 3 

Current hand sizes: 

Player 1: 6 cards 

Player 2: 6 cards 

Player 3: 7 cards 

Player 4: 7 cards 

 

... 

 

Player 1 (Dijkstra) wins! 

 

 

IV.   CONCLUSION 

This paper has demonstrated the effective application of 

graph theory in modeling and analyzing the strategic gameplay 

of UNO. Through the implementation of various graph 

algorithms, particularly Dijkstra's Algorithm and the Minimax 

Algorithm, we have shown how mathematical modeling can 

enhance decision-making in card games. The key findings 

include: 

1. The successful representation of UNO gameplay using 

weighted graphs, where cards are vertices and playable 

moves are edges, provides a structured approach to 

strategy analysis. 

2. The implementation of Dijkstra's Algorithm proved 

effective in finding optimal card sequences, with the 

simulation showing that considering card weights leads 

to more strategic gameplay. 

3. The Minimax Algorithm's integration demonstrated the 

importance of looking ahead in gameplay, allowing 

players to anticipate and counter opponents' moves 

effectively. 

4. The real-time implementation showed that players 

using these algorithms maintained smaller hand sizes 

compared to traditional gameplay, indicating improved 

strategic decision-making. 

This research not only contributes to the understanding of 

UNO strategy but also demonstrates how graph theory can be 

applied to analyze and optimize gameplay in similar card games. 

Future work could explore additional algorithms, incorporate 

machine learning techniques, or extend the analysis to other card 

games with similar rule structures. 

 

 

V.   APPENDIX 

For the open source code it can be accessed through this link. 
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