
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Modeling UNO Gameplay Using Graph Theory to

Analyze Optimal Strategies

Muhammad Rizain Firdaus - 13523164

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13523164@std.stei.itb.ac.id, icon.firdaus@gmail.com

Abstract— This paper presents a graph theory-based approach

to analyze and optimize strategies in the card game UNO. We

model the gameplay using weighted graphs and implement both

Dijkstra's and Minimax algorithms for strategic decision-making.

Our implementation demonstrates that Dijkstra's algorithm excels

at optimizing immediate moves, while Minimax provides robust

defensive strategies in multi-player scenarios. The results show that

graph-based modeling effectively identifies optimal card sequences

and strategic decisions, contributing to the broader understanding

of applying graph theory in game strategy optimization.

Keywords—graph theory, UNO card game, Dijkstra's algorithm,

Minimax algorithm, game strategy optimization.

I. INTRODUCTION

Graph theory, a branch of discrete mathematics, is widely

used to model relationships and optimize decision-making

processes in complex systems. It provides a structured approach

to understanding interactions within networks, making it a

powerful tool for solving problems in various fields such as

computer science, logistics, and social networks. The

application of graph theory to games, particularly those

involving strategic decision-making, has gained significant

attention due to its ability to uncover optimal strategies and

predict outcomes.

UNO, a popular card game with simple yet dynamic rules,

presents a unique opportunity for applying graph theory in a

recreational setting. In UNO, each card is characterized by its

color, number, and specific actions (e.g., skip, reverse, draw

two), and players are required to match cards based on color or

number to make moves. This leads to a system where the

relationships between cards and players can be effectively

modeled using graph theory.

Fig 1. Uno Games

Source: Playstation Store App

In this paper, we model the game of UNO using graphs, where

each card is represented as a vertex and edges connect cards that

can be played consecutively according to the game’s rules. The

graph will help identify optimal strategies by analyzing the

connections between cards and their effects on gameplay.

Specifically, we explore how the structure of the graph—such

as the adjacency of playable cards, the potential sequences of

moves, and the strategic positioning of action cards—can inform

decision-making.

Through this approach, we aim to provide a deeper

understanding of the strategic elements in UNO, answering

questions such as:

- What is the most efficient sequence of moves to reduce

hand size quickly?

- How can players identify which cards should be

prioritized to maintain a playable hand?

- How does the presence of action cards (e.g., skip,

reverse) influence the optimal strategy?

By modeling the gameplay through a graph, we not only

highlight the potential of graph theory in game theory but also

demonstrate how it can be applied to enhance decision-making

in simple rule-based environments. The results of this study

offer valuable insights into strategy optimization, with broader

implications for games involving similar structured interactions.

II. THEORETICAL BASIS

1. Graph Theory
Graph theory, a pivotal area of discrete mathematics,

examines the relationships between pairs of objects through

graphs. A graph comprises vertices (nodes) and edges

(connections between nodes). In this study, each vertex

represents a card in the UNO game, and each edge signifies

a playable connection between two cards, adhering to the

game's rules [1].

Graphs can be categorized into various types,

including:
- Bipartite Graphs: Graphs where vertices can be

divided into two disjoint subsets, with edges only

connecting vertices from different subsets. In UNO,

this could represent cards classified by color or number

[1].

mailto:13523164@std.stei.itb.ac.id
mailto:icon.firdaus@gmail.com

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig 2.1. Bipartite Graph

Source: Graph-Part-1 informatika.stei.itb.ac.id

- Weighted Graphs: Graphs where edges have weights

assigned, representing some form of cost or distance.

In UNO, weights could denote the strategic value of a

card in terms of its impact on the game's progress [1].

Fig 2.2. Weighted Graph and Unweighted Graph

Source: Graph-Part 1 informatika.stei.itb.ac.id

- Trees and Cycles: A tree is a connected graph with no

cycles, while a cycle is a path where the starting and

ending vertices are the same. Cycles may appear in the

sequence of moves during the game, where cards loop

back to earlier positions [1].

Fig 2.3 Tree, Cycles, and Forest

Source: Graph-Part 1 informatika.stei.itb.ac.id

2. Graph Representation of UNO
In this study, we model the UNO game using a graph

where each card is represented by a vertex, and edges

connect cards that are playable based on the game's rules.

The game follows a set of simple yet dynamic rules:

- Players can play a card if it matches the color or

number of the card in the centre [3].

- Special action cards (such as skip, reverse, draw two,

wild) have additional effects that modify the sequence

of moves or the flow of the game [3].

Thus, in our graph representation:

o Vertices represent the cards in a player's hand

or the deck.

o Edges represent possible moves between

cards that satisfy the game's playability rules

(matching colors or numbers).

o Action cards introduce additional edges that

affect the state of the game (such as skipping

the next player or reversing the direction of

play).

3. Graph Algorithms for Strategy Analysis
Several key graph algorithms can be applied to

analyze optimal strategies in UNO:

3.1. Depth-First Search (DFS) and Breadth-First

Search (BFS): DFS explores the graph by diving deep

into one possible sequence of moves before

backtracking. This can be used to simulate a sequence

of card plays to find the longest playable sequence or

to identify dead ends in gameplay. By exploring all

possible paths, DFS can help analyze which cards

should be played first to maximize future

opportunities [4].): BFS explores the graph level by

level, ensuring that all reachable cards are explored in

a systematic order. In the context of UNO, BFS could

help identify the shortest path (i.e., the fewest number

of moves) to reach a winning state by playing all cards

[4].

Fig 2.4. DFS and BFS Representation

Source: GeeksforGeeks

3.2. Maximum Matching: This algorithm helps identify

pairs of cards that can be played consecutively based

on the game's rules. By maximizing the number of

matching cards in the player's hand, we can strategize

the optimal sequence for card play [4].

3.3. Graph Coloring: Graph coloring can be used to

represent situations where cards of a certain color

must be prioritized or separated. The coloring

algorithm can help in situations where multiple color

cards exist, and finding an optimal color grouping for

a player's hand can be beneficial [4].

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig 2.5. Graph Coloring

Source: Graph-Part 3-informatika.stei.itb.ac.id

3.4. Shortest Path Algorithms (Dijkstra’s or Bellman-

Ford): These algorithms can be used to calculate the

quickest path to reduce a player's hand size. In the

context of UNO, the goal is to minimize the number

of turns or moves required to empty the hand, taking

into account action cards that could alter the course of

play [4].

3.5. Minimax Algorithm: The Minimax Algorithm is a

decision-making strategy typically used in two-player

games where one player's gain is another player's loss.

In the context of UNO, the algorithm can be adapted

to model strategic decision-making in dynamic, multi-

player scenarios by treating the game's state as a tree

structure, where each node represents a possible game

state, and edges represent potential moves.

4. Strategy Optimization in Game Theory
In game theory, the concept of optimal strategies is

crucial. An optimal strategy is one that maximizes a

player's chances of winning, taking into account all

possible moves and counter-moves. The optimal strategy

in UNO is influenced by both the state of the game (i.e.,

the cards in the hand and on the table) and the rules

governing card play [5].

In the context of UNO, graph theory helps optimize

strategy by:

o Modeling the possible sequences of plays to

minimize the number of moves required to win [5].

o Analyzing the effects of action cards (such as Wild

and Skip) to determine the best time to use them for

disrupting the opponent's progress [5].

o Identifying the best starting card by analyzing the

graph to determine which card is most likely to open

up the greatest number of future plays [5].

By combining these graph-based algorithms with game-

theory concepts, it is possible to develop a comprehensive

strategy that can be applied in real-world UNO gameplay

[5].

III. ANALYZING UNO STRATEGY USING GRAPH-BASED

APPROACH

Based on the theorical basis that had been discussed, as the

topic of this paper is bound to a strategic games. The graph is

used to represents not only the standard UNO card that used in

the game, but also the game-flow is represented by using graph.

The graph that is being used is basically to generate the best

algorithm procedure to find the best move it could find. For the

example in this paper is going to used the Dijkstra’s Algorithm

(an algorithm to find the shortest path by using weighted value

by weighted graph represented).

1. Cards Value Representation Using Graph

 In the context of UNO, each card possesses unique attributes

such as color, number, or action type (e.g., Skip, Reverse, Wild).

These attributes can be effectively mapped into a graph

structure, where each card is represented as a vertex and their

playable relationships are defined as edges. The edges in the

graph signify the possible moves allowed based on UNO rules,

such as matching by color, number, or action.

1.1. Vertex Representation

Each vertex in the graph corresponds to a specific

card in the UNO deck. For instance: A red "5" card is

represented as a vertex labelled R5. A blue "Skip"

card is represented as a vertex labelled B-Skip.

1.2. Edges Representation

Edges between vertices define the transitions

between playable cards:

o If two cards share the same color, an edge is

formed. For example: R5 ↔ R7 (Red cards

"5" and "7").

o If two cards share the same number, an edge

is formed. For example: R5 ↔ G5 (Cards

"5" in red and green colors).

o Action cards (e.g., Wild) connect to all

possible playable cards. For example: Wild

↔ R5, Wild ↔ B-Skip.

1.3. Weighted Graph Representation

Edges between vertices define the transitions

between playable cards:

o If two cards share the same color, an edge is

formed. For example: R5 ↔ R7 (Red cards

"5" and "7").

o If two cards share the same number, an edge

is formed. For example: R5 ↔ G5 (Cards

"5" in red and green colors).

o Action cards (e.g., Wild) connect to all

possible playable cards. For example: Wild

↔ R5, Wild ↔ B-Skip.

Fig 3.1. Graph for cards value representation

Source: Author’s Document

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

2. Game Flow Representation Using Graph
The game flow in UNO can also be represented as a

dynamic graph. Here, the focus is on the sequence of

moves during a player's turn and how the graph evolves

with each play.

2.1. Turn-Based Transitions

During each turn, the graph is updated based on

the active card on the discard pile:

o The active card becomes the "source" vertex.

o All valid moves from the player's hand form

the outgoing edges from the source vertex.

2.2. Example of Turn-Based Graph Evolution

Suppose the active card is R5, and the player's

hand contains {R7, G5, Wild}:

o Graph at turn start: Source vertex: R5.

Outgoing edges: {R5 → R7, R5 → G5, R5

→ Wild}.

o After playing R7, the graph updates: Source

vertex: R7. Outgoing edges: {R7 → Wild}

(assuming only Wild remains playable).

2.3. Dynamic Weight Adjustment

To optimize the decision-making process, edge

weights can dynamically adjust based on:

o Remaining cards: Assign higher weights to

moves that leave the opponent with more

cards.

o Action cards: Prioritize moves that disrupt

opponents (e.g., Skip, Reverse).

Fig 3.2. Graph for game-flow

Source: Author’s document

3. Strategic Pathfinding Using Dijkstra’s Algorithm
The graph structure allows for the application of

Dijkstra's algorithm to find the optimal sequence of plays.

The goal is to identify the shortest path (lowest weight) to

achieve a winning condition, such as emptying the hand.

3.1. Algorithm Implementation

o Input Graph: Provide the weighted graph

representing the current state of the game.

o Start Node: Set the active card as the starting

vertex.

o End Node: Define the goal state, such as a vertex

representing an empty hand or a specific winning

move.

o Pathfinding: Apply Dijkstra’s algorithm to

calculate the shortest path and its total weight.

3.2. Example Application

o Initial state: Player’s hand = {R7, G5, Wild},

Active card = R5.

o Graph weights:

▪ R5 → R7: Weight 1 (matching color).

▪ R5 → G5: Weight 2 (matching number).

▪ R5 → Wild: Weight 0.5 (universal

playability).

o Dijkstra's output:

▪ Optimal path: R5 → Wild.

▪ Total weight: 0.5.

Fig 3.3. Dijkstra’s algorithm pathfinding graph

visualization

Source: Author's document

Table 3.1. Effectiveness percentage table

Move Weight

(𝑤)

Effectiveness

(
1

𝑤
)

Percentage

(
𝐸

ΣE
 × 100%)

R7 (Same

Color)

1 1 28,57%

G5 (Same

Number)

2 0,5 14,29%

Wild

(Universal)

0,5 2 57,14%

4. Dynamic Strategy Optimization Using Minimax

Algorithm

4.1. Representing the Game Using a Game Tree

To apply the Minimax Algorithm, the game is first

represented as a tree structure. Each node in the tree

corresponds to a unique game state, defined by:

▪ The player’s hand (cards available for play).

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

▪ The current top card on the discard pile.

▪ The cards potentially held by the opponents

(estimated based on previous moves).

▪ The state of the draw pile.

Edges between nodes represent possible actions, such

as playing a card, drawing a card, or skipping a turn. The

game tree is expanded up to a specific depth, representing a

sequence of moves. Terminal nodes (leaf nodes) correspond

to the end of a series of moves, where the evaluation

function assigns a score to the resulting game state.

4.2. Evaluation Function

The evaluation function is central to the Minimax

Algorithm, as it quantifies the desirability of each game

state. For UNO, the evaluation function could consider:

▪ Reduction in Player’s Cards: Favor moves that

reduce the number of cards in the player’s hand.

▪ Impact on Opponents: Penalize moves that allow

opponents to play or reduce their cards easily.

▪ Special Card Effects: Reward moves that utilize

special cards (e.g., Skip, Reverse, Wild) to disrupt

opponents or gain strategic advantage.

▪ Game Progression: Account for moves that bring

the player closer to winning the game while

limiting the opponents’ ability to do so.

4.3. Applying the Minimax Algorithm

The Minimax Algorithm is applied by first

constructing a game tree from the current state of the UNO

game, where each branch represents a sequence of possible

moves. Starting at the root node, which corresponds to the

current game state, the algorithm explores all potential

actions up to a specific depth in the tree. Each terminal node

(leaf node) is evaluated using an evaluation function that

assigns a score to the resulting game state. The algorithm

then backpropagates these scores to determine the optimal

path. Maximizing nodes, which represent the current

player's turn, select the move that yields the highest score,

aiming to improve the player’s advantage. Conversely,

minimizing nodes, representing the opponents' turns,

choose the move with the lowest score, attempting to

minimize the maximizing player's benefit. This process

ensures that the selected move considers not only the

player’s perspective but also the opponents’ potential

responses. Additionally, after each turn, the game tree is

dynamically recalculated, allowing the strategy to adapt to

the evolving game state and maintain its effectiveness

throughout the game.

4.4. Scenario Example

Consider a scenario where the player’s hand includes

the following cards: R5, R7, G5, B-Skip, Wild. The current

top card on the pile is R5. The possible moves are:

o Play R7 (same color as the top card).

o Play G5 (same number as the top card).

o Play Wild (valid regardless of the top card).

o Play B-Skip (invalid unless a blue card or

Skip is on top, so not considered).

o Draw a card from the draw pile.

Fig 4.1. Visualization for game scenario examples

Source: Author’s document

The Minimax Algorithm evaluates these moves,

considering the effects on the game state and opponents.

For instance, playing Wild might force the opponent to

draw cards if they lack the chosen color, while playing R7

maintains the current color and avoids helping the

opponent.

4.5. Algorithm Implementation

The implementation of the Minimax Algorithm in the

context of UNO requires constructing a game tree, where

each node represents a game state. The edges denote

transitions resulting from possible moves, and terminal

nodes are evaluated to determine the desirability of a game

state. The algorithm backpropagates these evaluations to

identify the optimal move.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig 4.2. Source code for minimax algorithm (based on the

example given)

Source: Author’s Document

The Minimax Algorithm implemented in the code is

designed to evaluate the best move in a game scenario,

represented as a tree structure. The algorithm recursively

explores all possible moves from a given state, alternating

between a maximizing player (who seeks to maximize the score)

and a minimizing player (who seeks to minimize the score).

In the provided example, the game starts with the "start" state.

From here, the player can choose between playing the card R5

(Red 5) or Wild. If the player chooses R5, the subsequent moves

could be R7 (Red 7) or G5 (Green 5). If the player chooses

Wild, the next moves could be B-Skip (Blue Skip) or R7. Each

of these moves leads to an end state, which signifies the

termination of the game.

The algorithm begins at the root node ("start") and evaluates

each branch of the tree to a specified depth (3 in this case). For

instance, if the maximizing player selects R5, the algorithm

proceeds to evaluate the children of R5, which are R7 and G5.

The values assigned to these cards are retrieved from the

card_values dictionary, where R7 has a value of 7 and G5 has

a value of 5. The algorithm compares these values to determine

the best move for the maximizing player.

If the minimizing player then takes a turn, they will evaluate

their moves (e.g., B-Skip or R7) with the goal of minimizing the

score. For example, playing B-Skip leads to an end state with a

value of 3, while R7 leads to an end state with a value of 7. The

minimizing player will prefer the branch that leads to the lower

value (3 in this case). The algorithm uses the evaluation values

to backtrack through the tree, calculating the optimal path for

both the maximizing and minimizing players.

Fig 4.3. Minimax graph visualization

Source: Author’s document

5. Real Time Game Implementation

5.1. Introduction to the game

The provided code simulates a UNO card game with

players using two different algorithms: Dijkstra's Algorithm

for the first player and the Minimax algorithm for the

remaining players. The game adheres to the classic rules of

UNO, where players take turns playing cards that match

either the color or the value of the top card in the discard

pile. Special cards like 'Skip', 'Reverse', and 'Draw Two'

introduce additional mechanics, while 'Wild' and 'Wild

Draw Four' allow players to change the color.

5.2. Game scenario

In the UNO game simulation, four players are

involved, with Player 1 using Dijkstra’s Algorithm and

Players 2-4 utilizing the Minimax Algorithm. The game

starts with each player receiving 7 cards from a shuffled

deck consisting of 108 cards, which includes number cards

(0-9) and special cards (Skip, Reverse, Draw Two, Wild,

and Wild Draw Four). A random card is placed in the

discard pile to begin the game. During each round, the

current player must either play a valid card matching the

color or value of the top card on the discard pile or draw a

card from the deck. The algorithms choose the optimal card

based on their strategies: Dijkstra’s Algorithm for Player 1

calculates the best move based on card weights, while the

Minimax Algorithm simulates future moves to select the

most favorable one. Special cards like Skip, Reverse, Draw

Two, Wild, and Wild Draw Four add strategic layers to the

game, affecting the turn order, direction of play, and forcing

other players to draw cards. If a player cannot play a valid

card, they draw from the deck and continue. The game ends

when a player discards all their cards, or if the maximum

round limit (100 rounds) is reached, with the player having

the fewest remaining cards winning in the latter case.

5.3. Algorithm and source code

The UnoGame class is the central component of the

UNO game simulation, encompassing all the game logic

and mechanics. The game initializes with a shuffled deck of

108 cards, which include both number cards (0-9) and

special action cards (Skip, Reverse, Draw Two, Wild, Wild

Draw Four). The game begins with each player being dealt

7 cards, and a random card is placed in the discard pile. The

is_valid_move method checks if a card played is

compatible with the top card in the discard pile based on its

color or value, and the get_valid_moves method returns a

list of playable cards. The AI decision-making is handled

through two distinct strategies: Dijkstra's Algorithm for

Player 1 and Minimax for the other players. Dijkstra's

Algorithm selects the optimal move by calculating the

weight of each card, where special cards (Wild, Draw Two,

etc.) are valued differently. In contrast, the Minimax

Algorithm evaluates possible future states recursively using

depth-first search with alpha-beta pruning to determine the

best move. Special cards such as Skip, Reverse, and Draw

Two have their effects on gameplay, manipulating turn

order or forcing players to draw cards. The game progresses

with players either playing a valid card or drawing from the

deck if no valid moves are available. If a Wild card is

played, the player selects a new color for the game to

continue. The game ends when a player discards all their

cards, or if the game exceeds 100 rounds, with the player

holding the fewest cards being declared the winner in the

latter case.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig 5.1. First snippet of the code

Source: Author’s document

Fig 5.2. Second snippet of the code

Source: Author’s document

Table 5.1. Terminal output

Starting UNO game simulation...

Player 1 uses Dijkstra's Algorithm

Players 2-4 use Minimax Algorithm

Initial hands:

Player 1 (Dijkstra): Red 3, Blue 5,

Green Skip, Yellow Reverse, Wild, Red

0, Blue Draw Two

Player 2 (Minimax): Green 3, Yellow 6,

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Blue 8, Red Skip, Green 9, Yellow 2,

Red 5

Player 3 (Minimax): Blue 4, Red 7,

Green Skip, Yellow Draw Two, Green

Reverse, Red 9, Yellow 1

Player 4 (Minimax): Green 6, Red Skip,

Blue 3, Yellow Reverse, Green Draw Two,

Red 0, Green Wild

Starting card: Green 5

Round 1

Current player: 1 (Dijkstra)

Top card: Green 5

Player 1 plays: Green 5

Current hand sizes:

Player 1: 6 cards

Player 2: 7 cards

Player 3: 7 cards

Player 4: 7 cards

Round 2

Current player: 2 (Minimax)

Top card: Green 5

Player 2 plays: Green 3

Current hand sizes:

Player 1: 6 cards

Player 2: 6 cards

Player 3: 7 cards

Player 4: 7 cards

...

Player 1 (Dijkstra) wins!

IV. CONCLUSION

This paper has demonstrated the effective application of

graph theory in modeling and analyzing the strategic gameplay

of UNO. Through the implementation of various graph

algorithms, particularly Dijkstra's Algorithm and the Minimax

Algorithm, we have shown how mathematical modeling can

enhance decision-making in card games. The key findings

include:

1. The successful representation of UNO gameplay using

weighted graphs, where cards are vertices and playable

moves are edges, provides a structured approach to

strategy analysis.

2. The implementation of Dijkstra's Algorithm proved

effective in finding optimal card sequences, with the

simulation showing that considering card weights leads

to more strategic gameplay.

3. The Minimax Algorithm's integration demonstrated the

importance of looking ahead in gameplay, allowing

players to anticipate and counter opponents' moves

effectively.

4. The real-time implementation showed that players

using these algorithms maintained smaller hand sizes

compared to traditional gameplay, indicating improved

strategic decision-making.

This research not only contributes to the understanding of

UNO strategy but also demonstrates how graph theory can be

applied to analyze and optimize gameplay in similar card games.

Future work could explore additional algorithms, incorporate

machine learning techniques, or extend the analysis to other card

games with similar rule structures.

V. APPENDIX

For the open source code it can be accessed through this link.

VI. ACKNOWLEDGMENT

First and foremost, I would like to express my deepest

gratitude to Allah SWT for His endless blessings, guidance, and

strength throughout the process of completing this research

paper. Without His grace, this work would not have been

possible. I would like to extend my sincere appreciation to Dr.

Rinaldi Munir for his invaluable guidance, expertise, and

continuous support throughout this research. His deep

knowledge in discrete mathematics and graph theory, coupled

with his patient mentorship, has been instrumental in shaping

this paper.

My heartfelt thanks go to my friends and colleagues in the

Informatics Engineering program at Institut Teknologi

Bandung, particularly my classmates in the IF1220 Discrete

Mathematics course. Their constructive feedback, engaging

discussions, and moral support have greatly enriched this

research experience. I am also grateful to the academic staff and

faculty members of the School of Electrical Engineering and

Informatics at Institut Teknologi Bandung for providing an

excellent academic environment and resources necessary for

conducting this research.

Special thanks to the open-source community for providing

various tools and libraries that were essential in implementing

the algorithms discussed in this paper. The availability of these

resources significantly contributed to the practical aspects of this

research. Finally, I would like to express my deepest

appreciation to my family for their unwavering support,

understanding, and encouragement throughout my academic

journey.

REFERENCES

[1] G. O. Young, "Synthetic structure of industrial plastics (Book style with

paper title and editor)," in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York:
McGraw-Hill, 1964. [Online]. Available: https://www.mcgraw-

hill.com/plastics. Accessed: Dec. 20, 2024.

[2] R. Munir, Matematika Diskrit: Teori Graf. Yogyakarta, Indonesia:
Penerbit Universitas Atma Jaya, 2020. [Online]. Available:

https://www.uaj.ac.id/books/matematika-diskrit. Accessed: Dec. 15,

2024.D.
[3] R. Munir, "Graph Theory and its Applications in Game Analysis,"

Mathematics Journal, vol. 15, no. 3, pp. 150-163, 2021. [Online].

Available: https://www.mathjournal.org/articles/15/3/graph-theory.
Accessed: Dec. 18, 2024.

[4] D. P. Pal and H. L. Crouch, Mathematics for Game Design, 2nd ed. New

York: Springer, 2021. [Online]. Available:

https://github.com/inRiza/Uno-Best-Move-Generator
https://www.mcgraw-hill.com/plastics
https://www.mcgraw-hill.com/plastics
https://www.uaj.ac.id/books/matematika-diskrit
https://www.mathjournal.org/articles/15/3/graph-theory

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

https://www.springer.com/mathematics-game-design. Accessed: Dec. 21,
2024.

[5] R. Munir, Introduction to Discrete Mathematics, 3rd ed. Yogyakarta,

Indonesia: Penerbit Universitas Atma Jaya, 2018. [Online]. Available:
https://www.uaj.ac.id/books/discrete-mathematics. Accessed: Dec. 17,

2024.

[6] K. R. Gharpure, Game Theory in Practice: Strategies and Optimizations in
Competitive Games. London: Wiley & Sons, 2020. [Online]. Available:

https://www.wiley.com/game-theory-practice. Accessed: Dec. 19, 2024.

STATEMENT

I hereby declare that the paper I wrote is my own writing, not

an adaptation, or translation of someone else's paper, and not

plagiarized.

Jatinangor, January 8 2025

Muhammad Rizain Firdaus - 13523164

https://www.springer.com/mathematics-game-design
https://www.uaj.ac.id/books/discrete-mathematics
https://www.wiley.com/game-theory-practice

